BC411 – Physical Biochemistry

Instructors:	Dr. Olve Peersen	Dr.
Office:	MRB 341	MF
Phone:	491-0433	492
Email:	Olve.Peersen@ColoState.edu	Bo

Robert Cohen RB 273 2-4117 b.Cohen@ColoState.edu

Teaching Assistant: Ryan Czarny email: ryan.czarny@colostate.edu

Course Description

BC411 is delivered as a face-to-face course that covers fundamental concepts of physical chemistry and their application to understanding the behavior of biological systems. It is aimed at providing the student with an appreciation for the basic laws of thermodynamics, biochemical equilibria, reaction rates and kinetics in biological reactions, and molecular spectroscopy.

Learning Outcomes and Assessment

Students are expected to learn the applications of quantitative and experimental methods to study and understand biochemical processes. Students are expected to enter the course with a background in chemistry, physics, biology, mathematics (including calculus), and one full year of comprehensive biochemistry. Thus, students enrolled in BC411 will demonstrate the ability to understand the foundational principles from which fundamental biochemical processes are derived; understand how to interpret equations, formulas, and concepts that underlie these principles; and apply these equations, formulas, and concepts to conceptually understand various biochemical processes and solve problems based on experimental observations and quantitative data.

Class hours:	BC411 Lectures: BC411 Recitation 1: BC411 Recitation 2:	Mon–Wed–Fri 9:00–9:50 AM in Biology 136 Thu 9:00–9:50 AM in Clark A202 Thu 2:00–2:50 PM in Pathology 111
Office hours:	Dr. Cohen: Dr. Peersen: Ryan Czarny:	Friday, 2:00 – 2:50 PM in MRB 273 Friday, 1:00 – 1:50 PM in MRB 341 Tuesday, 2:30 – 4:30 PM in MRB 250

- **Pre/Co-requisites:** Biochemistry (BC401, or BC351 with instructor approval) CHEM113, MATH161 or MATH255.
- Text: The Molecules of Life (2012) by Kuryan, Konforti & Wemmer; Garland Science **NOTE:** E-book versions are available for purchase or rental from Amazon
- Grading: The traditional grading (A, B, C...) system will be used. Grades in BC411 will be based on four exams (15% each), a two-hour comprehensive final (25%), and weekly problem sets (15%). Students are expected to devote 6 hours each week to complete the assigned homework. A portion of the homework grade will come from inrecitation presentations of answers to the problem sets.

CSU Student Honor Code: This course will adhere to the Academic Integrity Policy of the Colorado State University General Catalog {Page 7} and the Student Conduct Code.

BC411 Syllabus – Fall 2018

1	Date	Subject	Reading	Inst
Aug	g. 20	Introduction to Course & Thermodynamics	Syllabus – Ch 1	RC
	22	Systems, ideal gas equations	Ch 6A	RC
Wk1	23	Recitation (Math concepts)		
	24	Thermodynamic Laws	Ch 6.3, 7, & 8	RC
Aug	. 27	Free energy and solutions/Standard State	Ch 7 & 8	RC

	29	Intro macromolecular structure/Protein Folding	Ch 8 & 9	RC
Wk2	30	Recitation		
	31	Non-covalent interactions	Ch 10A & 10B	RC
Sep	p. 3	Labor day – no class		RC
	5	2° Structure; Ramachandran diagram	Ch 9.10 & 9.11	RC
Wk3	6	Recitation		
	7	Experimental Thermodynamics End for Exam I	Ch 10D	RC
Wk4	10	Introduction to spectroscopic methods	Supplemental	OP
	12	Exam I	~	OP
	13	Wave-Particle Duality, Biological Chromophores	Supplemental	
	14	Absorbance	Supplemental	OP
Sep	. 17	UV/VIS Absorbance – protein quantitation methods	Supplemental	OP
	19	Circular Dichroism Spectroscopy	Supplemental	OP
Wk5	20	Recitation	~	
~	21	Fluorescence Spectroscopy I	Supplemental	OP
Sep	. 24	Fluorescence Spectroscopy II – Environmental effects	Supplemental	OP
/	26	Fluorescence Spectroscopy III – Polarization	Supplemental	OP
Wk6	27	Recitation		0.0
	28	Fluorescence Spectroscopy IV – FRET End for Exam II	Supplemental	OP
Oct	. I	Analytical Ultracentrifugation		OP
****	3	Exam II		OP
WK/	4	Recitation		OD
	<u> </u>	Nuclear Magnetic Resonance of proteins		OP
Oct	. 8	Multidimensional NMR		OP
3371-0	10	Protein structure by NMR		OP
VV Kð	11	Recitation		OD
0.4	12	Crystallography I: Crystals & Symmetry		OP
Oct.	. 15	Crystallography II: Diffraction		OP
33/1-0	1/	Crystallography III: The Phase Problem		OP
VV K9	10	Crystallography IV: Density Mana End for Ergm III		OD
Oat	19	Crystanography IV. Density Maps End Jor Exam III		
001.	24	Kinetics General principles for rates reaction orders	$C = 15 \wedge (15 + 8)$	
Wk10	2 4 25	Recitation	CII 15A (15.1–.8)	01
WRIU	$\frac{25}{26}$	Kinetics – Half-lives sequential reactions	Ch 15A (159–10)	OP
Oct	$\frac{20}{29}$	Reversibility equilibrium steady state	Ch 15B $(15.11-18)$	OP
Wk11	31	Rate constants, catalysis and activation energy	Ch 15D (15.11-10) Ch 15C (15.22-30)	OP
No	v^{1}	Recitation	Ch 15C (15.22–.50)	01
110	2	Enzyme catalysis – Michaelis-Menten Kinetics	Ch 16A (16.1–8)	RC
Nov	v. 5	Complex enzymatic reactions and inhibition	Ch 16B $(16.9 - 17)$	RC
1101	7	Inhibition, concentrations at equilibrium	Ch 16B (16.917)	RC
Wk12	28	Recitation		
	9	Affinity & specificity End for Exam IV	Ch 13A (13.1–9)	RC
Nov	. 12	Protein-Protein Interactions	Ch 13B $(13.10-21)$	RC
1,01	14	Protein-Nucleic Acid Interactions	Ch $13C(13.22-33)$	RC
Wk13	15	Recitation	C. 100 (10122 00)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16	Exam IV		RC
L	10			ne.

Nov 19-23	Fall Break week – no classes		
Nov. 26	Allostery and biological responses	Ch 14A (14.1–.9)	RC
28	Molecular Recognition – Drug binding	Ch 12B (12.12–.23)	RC
Wk14 29	Recitation		
30	Membranes: Composition and Structure	Ch 3B (3.13–.23)	RC
Dec. 3	Membrane Proteins	Ch 4D (4.31–.44)	RC
5	Mass Spectrometry	Supplemental	RC
Wk15 6	Recitation		
7	Protein Analysis by Mass Spectrometry	Supplemental	RC

Dec. 13 Thursday

Final Exam 4:10 – 6:10 PM in Biology 136

Approximately half of the final exam will be on material since Exam IV and the other half will be comprehensive over the full semester

Additional useful resources for the course (not required):

Principles of Physical Biochemistry, 2^m Ed., by van Holde, Johnson, and Ho (2006)

Principles and Problems in Physical Chemistry for Biochemists by Price, Dwek, Ratcliffe & Wormald (2002)