LIFE 201B Sections 002/202

INTRODUCTORY GENETICS – Molecular/Immunological/Developmental

Spring Semester, 2019 Pathology 101, MWF 3:00-3:50 PM

Instructors:

- Dr. Narasimha Sreerama (Sree), Dept. of Biochemistry and Molecular Biology Office: MRB 212 – Will change to Anatomy and Zoology bldg. in Feb/Mar Office hours: Will be announced in class and Posted on Canvas E-mail: <u>Narasimha.Sreerama@colostate.edu</u> or through Canvas
- GTA: Will be announced in class and Posted on Canvas
- Textbook: Essential Cell Biology, Alberts et al., 4th edition.

Tentative Schedule. Unfinished portions will be carried over to next lecture. Page numbers posted are approximate.

#	Day	Date	Торіс	Reading	Instructor
1	Wed	1/23	Introduction to course and molecular genetics	None	
		Sec	tion1: Molecules and Macromolecules		
2	Fri	1/25	Nucleic acid structure I	76-77, 171-179	
3	Mon	1/28	Nucleic acid structure II	"	
4	Wed	1/30	Protein structure	121-130, 137, 144- 145	
5	Fri	2/1	Protein function	۰۵	
6	Mon	2/4	Chromatin structure	185-191	
7	Wed	2/6	Chromosome structure	179-185	
		Sec	tion 2: The Molecular Processes of the C	entral Dogma	
8	Fri	2/8	DNA replication I	197-211	
9	Mon	2/11	DNA replication II	"	
10	Wed	2/13	DNA damage repair I	211-216	
11	Fri	2/15	DNA damage repair II	216-218, 652-653	
	Mon	2/18	Exam 1 (lectures 2-11)		
12	Wed	2/20	Recombination	296/9, 307-311	
		0 / 0 0	Transcription I	223-230	
13	Fri	2/22	Папзоприонт	223-230	
13 14	Fri Mon	2/22 2/25	Transcription II	265-269	
14	Mon	2/25	Transcription II	265-269	

18	Wed	3/6	Translation II	"	
		Sec	tion 3: Genomics and Genome Evolution	on	
19	Fri	3/8	Genomics I	325-354	
20	Mon	3/11	Genomics II	"	
21	Wed	3/13	Genomics III	"	
Fri 3/15 Exam 2 (lectures 12-21		ectures 12-21)			
22	Mon	3/25	Genomics IV	"	
23	Wed	3/27	Genomics V	334-5, 339, 347- 349, 354	
24	Fri	3/29	Gene and genome evolution I	289-321	
25	Mon	4/1	Gene and genome evolution II	G	
26	Wed	4/3	Gene and genome evolution III	"	
27	Fri	4/5	Gene and genome evolution IV	"	
		Sec	tion 4: Molecular Cellular Processes		
28	Mon	4/8	Cell cycle and mitosis I	603-633	
29	Wed	4/10	Cell cycle and mitosis II	"	
30	Fri	4/12	Cell cycle and mitosis III		
	Mon	4/15	Exam 3 (lectures 22-30)		
31	Wed	4/17	Meiosis/Gametogenesis I	645-657	
32	Fri	4/19	Meiosis/Gametogenesis II	"	
33	Mon	4/22	Cell signaling	525-561	
34	Wed	4/24	Genetic basis of development I	26-37, 276-281, 346-356, 525-539, 633-642	
35	Fri	4/26	Genetic basis of development II	"	
36	Mon	4/29	Genetic basis of development III	"	
37	Wed	5/1	Stem cells	702-712	
38	Fri	5/3	Genetic basis of cancer I	218-220; 553-559; 712-725	
39	Mon	5/6	Genetic basis of cancer II	66	
40	Wed	5/8	Genetic basis of cancer III	"	
41	Fri	5/10	Genetic basis of cancer IV	"	
Fina	ls (5/16)	Exam 4 (lectures	<mark>31-41) (5/16 – 12 PM)</mark>	

Learning Outcomes:

- 1. Understand the basic features of the molecules and macromolecules of genetics: nucleic acids, proteins, chromatin, chromosomes.
- 2. Understand the molecular processes of the central dogma of molecular genetics: replication, DNA repair, recombination, transcription, RNA processing, translation.
- 3. Know the principles of the fundamental experimental techniques used in molecular genetics.
- 4. Understand the principles of genome evolution.
- 5. Understand the molecular and cellular processes involved in molecular genetics: cell cycle/mitosis, meiosis, development, cancer.

Lecture Slides:

The slides for each lecture or a block of lectures will be posted on Canvas before the lecture.

COURSE DESCRIPTION

Title:	INTRODUCTORY GENETICS – MOLECULAR EMPHASIS		
Credits:	3		
Term offered:	Spring 2019		
Prerequisites:	Life102; C111 and C112, or concurrent registration.		
Format:	The class will meet as a group three days/week for lectures		
Evaluation:	Approximately 80-85% of your grade will be based on your performance on 4 exams (50 minutes each, in class). Exams may be curved.		
	Other ~15-20% of your grade will be based on online quizzes . These will generally be posted on Fridays, and due the next Monday. Announced in class		
Potential Grading:	90%-100%A80%-89.9%B70%-79.9%C60%-69.9%DBelow 60%F		
	Plus/minus grading will be used.		
Text:	Essential Cell Biology. Alberts et al., 4 th edition.		
Objective:	To provide an integrated interdisciplinary molecular genetics experience for biomedically oriented students with backgrounds and interests in biochemistry, cell and molecular biology, microbiology, developmental biology, and genetics.		

This course will adhere to the CSU Academic Integrity Policy as found in the General Catalog – 1.6, pages 7-9 (http://www.catalog.colostate.edu/Content/files/2012/FrontPDF/1.6POLICIES.pdf) and the Student Conduct Code (http://www.conflictresolution.colostate.edu/conduct-code). At a minimum, violations will result in a grading penalty in this course and a report to the Office of Conflict Resolution and Student Conduct Services.

The Colorado Commission on Higher Education has approved Life201B for inclusion in the Guaranteed Transfer (GT) Pathways program in the GT-SC2 category. For transferring students, successful completion with a minimum C– grade guarantees transfer and application of credit in this GT Pathways category. For more information on the GT Pathways program, go to http://highered.colorado.gov/academics/transfers/gtpathways/curriculum.html.

The content criteria and student learning outcomes (SLOs) listed below are required for GT-Pathways courses in the Natural and Physical Sciences content area, in the GTSC-2(Lecture course without required laboratory) category. The peculiar numbering of the SLOs is due to the fact that they are excerpted from a comprehensive list of SLOs across all GT-Pathways courses. The SLOs are listed within categories that the GT-Pathways program calls "competencies" and are displayed in italics below.

GT Pathways Natural & Physical Sciences - Course without Required Laboratory (GT-SC2) Content Criteria:

The lecture content of a GT Pathways science course (GT-SC2):

- a. Develop foundational knowledge in specific field(s) of science.
- b. Develop an understanding of the nature and process of science.
- c. Demonstrate the ability to use scientific methodologies.
- d. Examine quantitative approaches to study natural phenomena.

GT Pathways Natural & Physical Sciences - Course without Required Laboratory (GT-SC2) Competencies:

Inquiry & Analysis

- 4. Select or Develop a Design Process
 - a. Select or develop elements of the methodology or theoretical framework to solve problems in a given discipline.
- 5. Analyze and Interpret Evidence
 - a. Examine evidence to identify patterns, differences, similarities, limitations, and/or implications related to the focus.
 - b. Utilize multiple representations to interpret the data.
- 6. Draw Conclusions
- a. State a conclusion based on findings.

Quantitative Literacy

- 1. Interpret Information
 - a. Explain information presented in mathematical forms (e.g., equations, graphs, diagrams, tables, words).
- 2. Represent Information
 - a. Convert information into and between various mathematical forms (e.g., equations, graphs, diagrams, tables, words).