BC 351 Principles of Biochemistry Fall 2019 - Section 1 MTRF 8:00 to 8:50 AM, EDDY 212 Instructor: Narasimha Sreerama (Sree) Office: Anatomy & Zoology E206 (206F) – E-wing **See Map Phone**: 970-377-1609 E-mail: Narasimha.Sreerama@Colostate.edu (<u>preferred</u>) Office Hours: MTRF Before class (~7:20 AM); TR After class (~9:30) and By Appointment **Text (Optional)**: **Lehninger Principles of Biochemistry**, 6th or 7th Edition, by Nelson and Cox, (2013 or 2017), W.H.Freeman and Company, New York You may use any Biochemistry text as reference (you have to find the relevant sections). I will be referencing specific pages from the text listed above. | Exam Schedule | | | Q&A session | |----------------------|------------------|----------------------|-----------------| | Exam I | Monday, Sept 23 | Block of 14 lectures | Sunday, Sept 22 | | Exam II | Monday, Oct 21 | Block of 14 lectures | Sunday, Oct 20 | | Exam III | Monday, Nov 18 | Block of 14 lectures | Sunday, Nov 17 | | Final Exam | Thursday, Dec 19 | ~50% Lect. 43-52 | Sunday, Dec 15 | | | (8:00-9:30 AM) | ~50% Lect. 1-42 | - | Exams: Three in-term exams (*Weeks 5, 9, 13*) and a final exam (*Finals Week*). Exams will be objective questions (*multiple choice*). Final grade will be decided as an average of <u>all exams</u>. Exams I to III will have approx. 50 – 60 questions (each for 1, 2, 3, 4, or 5 points – total of **100** Exams I to III will have approx. 50 – 60 questions (each for 1, 2, 3, 4, or 5 points – total of **100** points) from a specified block of lectures. **Final Exam** will have 80 – 90 questions (each for 1, 2, 3, 4, or 5 points – total of **160** points); It is **cumulative** and about **half of the questions** will be from the topics covered in the **first three exams**. Quizzes (on Canvas) 10 points each – End of week 3, 7, 11, and 14 (Friday Noon – Monday Noon) Extra credit Quizzes (on Canvas) 5 points each – before exam (Friday Noon – Sunday Noon) Watch for Announcements in class and on Canvas Reviews: There will be an in-class brief-review (lecture may include some new material) for each exam. Open Q&A sessions are planned – Sunday before the Exam **Grades**: Assigned from total points from all exams and quizzes. Max: **500** $(100 \times 3 + 160 + 40)$ The letter grades will follow the table below, but may be relaxed (the averages required for a specific grade may be reduced, e.g., A - 85 - 100%) to compensate a low class average. | Grade | Final Average | | | |-------|---------------|--|--| | Α | 90 – 100 % | | | | В | 80 – 89 % | | | | С | 70 – 79 % | | | | D | 60 – 69 % | | | | F | Below 60 % | | | Some factual information required for the exam-questions will be provided (See sample exams). A **partial credit may be given** if a proper explanation for a wrong answer is provided (*need to see me in my office!*) – goes toward your understanding of the subject and critical thinking. For the final exam a cheat-sheet (one-page, A4, written on one side, DO NOT cut and paste questions from other exams – Exams 1-4 or sample exams) may be allowed. Details will be discussed in the class at appropriate time. Lecture Slides, Supplemental Material, Sample Exams, and Problem Sets will be posted on Canvas Periodically ## **Tentative Lecture Schedule** (52 Lectures; May change depending on the circumstances) - (A) If there are errors (typing or otherwise) please let me know. - (B) Slides used will be placed as PDF files on Canvas. It is your responsibility to print a copy for taking notes. - (C) Quizzes will be online (on Canvas). It is your responsibility to take them on time. They open on at <u>NOON</u> and close at <u>NOON</u> (Quiz 1, 2, etc – Friday - Monday) and (Quiz 1A, 2A, etc, Friday - Sunday). Notifications on Canvas. (D) Exams will be in class. | Week | Day | Торіс | Quiz | |--------------------|--|---|---------| | Week 1 M
T
R | M | Introduction; Biomolecules | | | | T | Building blocks; Chemical basis of life | | | | Thermodynamics : ΔH , ΔG ; ΔG^{o} and Keq | | | | | F | Oxidation number; Functional Groups | | | Week 2 | M | LABOR DAY HOLIDAY | | | | T | Water; Non-covalent interactions; polar/nonpolar groups | | | | R | pH, pK; acid/base and ionized forms; Buffers | | | | F | Nucleic Acids: Central Dogma; | | | Week 3 | M | DNA & RNA: Sugar, Base, Nucleotides; Chargaff's rules | | | | T | DNA & RNA: Secondary structures; | | | | R | Gene; mRNA, tRNA, rRNA | | | | F | Gene expression: translation, Genetic Code | Quiz 1 | | Week 4 | M | DNA Stability; DNA sequencing (Sanger's sequencing) | | | | T | DNA sequencing cont.; PCR | | | | R | Recombinant DNA; Cloning | | | | ${f F}$ | REVIEW I (may include new material) | Quiz 1A | | Sept 23 | Monday | Exam I (Block of first 14 lectures) | ~ | | Week 5 | M | EXAM I | | | | T | Site-directed mutagenesis; mutations and disease | | | | R | Proteins: classification; Levels of structure; Amino acids | | | | F | Amino acids: classification, pK and charges | | | Week 6 | M | pH, pK, charges; Peptide bond; | | | | T | Ramachandran Plot; Secondary structures – α and β | | | | R | Tertiary Structures - Globular Proteins | | | | F | Secondary structure rules | | | Week 7 | M | Secondary structure rules | | | | T | Structural Proteins: Fibrous Proteins - Keratin, Collagen | | | | R | Protein Folding: principles and energetics | | | | F | Protein sequencing; 2D-gel; Sanger and Edman reagents | Quiz 2 | | Week 8 | M | Structure/Function: Myoglobin and Hemoglobin O ₂ binding | | | | T | Binding curves; Cooperative binding – Allosterism, | | | | R | BPG, Bohr effect, mutations and hemoglobin function | | | | \mathbf{F} | REVIEW II (may include new material) | Quiz 2A | | Oct 21 | Monday | Exam II (Block of about 14 lectures) | ~ . | | Week | Day | Topic | Quiz | | |--------------------|-------------|--|---------------|--| | Week 9 M
T
R | M | EXAM II | | | | | T | Sickle Cell anemia; Cytoskeletal proteins; Muscle structure; | | | | | R | Muscle contraction; Lipids: Fatty acids; Membrane and storage lipids | | | | | F | Fluid mosaic model, Membrane proteins | | | | | M | Membrane Permeability; Membrane transport | | | | | T | Active and Passive transport; Ion channels; gating | | | | | R | Enzymes: Catalysis, active site, Free Energy diagram; models | | | | | F | Enzyme Kinetics: rate constants, K_M , K_{cat} ; Enzyme Inhibition | | | | Week 11 | M | Enzymatic reactions; Chymotrypsin; Substrate specificity | | | | | T | Enzyme mechanism: Serine proteases; Catalytic steps | | | | | R | Transitions state Stabilization; Regulation of Enzyme activity | | | | | F | Biochemical reaction classes; Metabolism; Fuels, ATP, NADH; | Quiz 3 | | | Week 12 | M | Metabolic flux; Carbohydrates: monomers, polymers, α and β forms | | | | | T | Glucose Metabolism: four pathways, locations and purpose; | | | | | R | Glycolysis – phases, reactions, intermediates | | | | | ${f F}$ | REVIEW III (may include new material) | Quiz 3A | | | Nov 18 | M | Exam III (Block of about 14 lectures) | | | | Week 13 | M | Exam III | | | | | T | Glycolysis continued; ATP yield | | | | | R | Gluconeogenesis – unique steps; futile cycle; Regulation of glycolysis/gl | uconeogenesis | | | | F | Pentose Phosphate Pathway – purpose; PDH reaction – acetyl-CoA | | | | Week 14 | Thanks | ksgiving Break | | | | Week 15 | M | Citric Acid cycle: Energy Generation, Regulation of the cycle | | | | | T | Oxidative Phosphorylation: Electron transport chain | | | | | R | ATP synthase; P:O ratio | | | | | F | Lipid Metabolism: lipoproteins – HDL, LDL, etc | Quiz 4 | | | | | | | | | Week 16 | M | β-oxidation, ATP yield, Ketogenesis – ketone bodies | | | | Week 16 | M
T | β-oxidation, ATP yield, Ketogenesis – ketone bodies Nitrogen Metabolism Nitrogen Fixation, N-Cycle, Glucogenic/ketogenic | e amino acids | | | Week 16 | M
T
R | β-oxidation, ATP yield, Ketogenesis – ketone bodies Nitrogen Metabolism Nitrogen Fixation, N-Cycle, Glucogenic/ketogenic Regulation of Metabolism: Insulin/Glucagon; diet and metabolic pathwa | | | ## Finals Week Dec 19 R Final Exam (8:00 AM – 9:30 AM) Cumulative: 50% from 10 Lectures (last Block of lectures) + 50% from Earlier Lectures (Lectures 1 – 42) **Disclaimer**: I hope to cover these topics. However, depending on the pace of the course I may have to skip certain topics. Usually things get a little hectic towards the end. I will however give you a fair shake of the processes. Exams will be on what is covered in class.