Instructors: Dr. P. Shing Ho Dr. Narasimha Sreerama Dr. Robert Cohen

MRB 375 Anatomy & Zoology E206 (F) MRB 273 491-0569 377-1609 492-4117

shing.ho@colostate.edu narasimha.sreerama@colostate.edu bob.cohen@colostate.edu

Teaching Assistants: Tom Cast email: t.cast@colostate.edu

Ryan Czarny email: ryan.czarny@colostate.edu

Course Description

BC411 is delivered as a face-to-face course that covers fundamental concepts of physical chemistry and their application to understanding the behavior of biological systems. It is aimed at providing the student with an appreciation for the basic laws of thermodynamics, quantum mechanics, biochemical equilibria, reaction rates and kinetics in biological reactions, and molecular spectroscopy.

Learning Outcomes and Assessment

Students are expected to learn the applications of quantitative and experimental methods to study and understand biochemical processes. Students are expected to enter the course with a background in chemistry, physics, biology, mathematics (including calculus), and one full year of comprehensive biochemistry. Thus, students enrolled in BC411 will demonstrate the ability to understand the foundational principles from which fundamental biochemical processes are derived; understand how to interpret equations, formulas, and concepts that underlie these principles; and apply these equations, formulas, and concepts to conceptually understand various biochemical processes and solve problems based on experimental observations and quantitative data.

Class hours: BC411 Lectures: Mon–Wed–Fri 9:00–9:50 AM in Biology 136

BC411 Recitation 1: Thu 9:00–9:50 AM in Clark A202 BC411 Recitation 2: Thu 2:00–2:50 PM in Pathology 109

Office hours: Dr. Ho: Friday, 2:00 - 2:50 PM in MRB 375

Dr. Sreerama: Wednesday, 8:00 – 8:50 AM in A/Z E206F

 Dr. Cohen:
 Friday, 2:00 – 2:50 PM in MRB 273

 Tom Cast:
 Wednesday, 1:30 – 3:30 PM in MRB 250

 Ryan Czarny:
 Tuesday, 1:30 – 3:30 PM in AZ E210

Pre/Co-requisites: Biochemistry (BC401, or BC351 with instructor approval)

CHEM113, MATH161 or MATH255.

Text: Biophysical Chemistry (2017) by Klostermeier & Rudolph; CRC Press, Taylor & Francis Group

Grading: The traditional grading (A, B, C...) system will be used. Grades in BC411 will be based on six exams (15% each) and weekly problem sets (10% total); there is no cumulative final exam. Students are expected to devote 6 hours each week to complete the assigned homework. A portion of the homework grade will come from in-recitation presentations of answers to the problem sets.

CSU Student Honor Code: This course will adhere to the Academic Integrity Policy of the Colorado State University General Catalog {Page 7} and the Student Conduct Code.

BC411 Syllabus - Fall 2019

Date	Subject	Reading	Inst
Aug. 26	Introduction to Course & Thermodynamics	Syllabus – Ch 1	SH
28	Systems, Ideal gas equations	Ch 2.1	SH
Wk1 29	Recitation (Math concepts)		GTA
30	Ideal Gases/Thermodynamic Laws 1	Ch 2.2	SH
Sept. 2	Labor day – no class	Ch 2.3	
4	Thermodynamic Laws 2	Ch 2.4	SH
Wk2 5	Recitation		GTA
Sept. 6	Free Energy/Solution State Thermodynamics	Ch 2.5, 3, 4	SH
Sep. 9	Experimental Thermodynamics End for Exam I	Ch 5	SH
11	Quantum Mechanics Intro/Light	Ch 19.1-19.2.2	SH
Wk3 12	Review		GTA
13	Exam I		SH
Sep. 16	Quantum Mechanics: Particle in 1-D box	ChemWiki QM1 & 2	SH
18	Quantum Mechanics: Particle in 1-D box/QM Tunneling	ChemWiki QM 3	SH
Wk4 19	Quantum Mechanics Math		SH
20	Quantum chemistry: Harmonic oscillator	ChemWiki QM5.5	SH
Sep. 23	Quantum chemistry: Hydrogen atom	ChemWiki QM 5.5, 2	SH
25	Quantum: Hydrogen atom/Atomic Orbitals	ChemWiki QM 6	SH
Wk5 26	Recitation		GTA
27	Quantum: Molecular Orbitals/QM Biology End for Exam II	ChemWiki QM 9	SH
Sep. 30	Exam II		NS
Oct. 2	Free Energy & Intro to Macromolecular Structure	Text 223-236;	NS
Wk6 3	Recitation	251-263	GTA
4	Noncovalent Interaction and Structure		NS
Oct. 7	Ramachandran Plot; Protein Folding	279-296	NS
9	Molecular Dynamics; Protein Folding	348-357	NS
Wk7 10	Recitation		GTA
11	Absorbance, Biological chromophores	365-377	NS
Oct. 14	UV/VIS absorbance, Protein Quantification	380-381;384-386	NS
16	CD spectroscopy	390-398	NS
Wk8 17	Exam III		NS
18	Fluorescence Spectroscopy	404-415; 422; TBD	NS

Oct. 21	NMR – Principles, chemical shifts, 2D	461-484; 489	NS
23	NMR – COSY, NOESY, applications		NS
Wk9 24	Recitation		GTA
25	Crystallography – basics, symmetry	536-556; 562-568	NS
Oct. 28	Crystallography – x-ray diffraction, Miller planes	515-519	NS
Wk10 30	Crystallography – phases, Patterson and density maps		NS
31	Recitation		GTA
Nov. 1	Exam IV		NS
Nov. 4	Kinetics – General principles for rates, reaction orders		RC
6	Kinetics – Half-lives, sequential reactions	Ch 6, 7, & 8	RC
Wk11 7	Recitation		GTA
8	Reversibility, equilibrium, steady state	Ch 9, 10	RC
Nov. 11	Rate constants, catalysis and activation energy		RC
13	Enzyme catalysis – Michaelis-Menten kinetics	Ch 11, 13, 14	RC
Wk12 14	Recitation		GTA
15	Enzymatic reactions and inhibition (I)		RC
Nov. 18	Enzymatic reactions and inhibition (II) End for Exam V		RC
20	Affinity, avidity, and specificity		RC
Wk13 21	Recitation		GTA
22	Exam V		RC
25	Thanksgiving – no class		RC
27	Thanksgiving – no class		RC
Wk14 28	Thanksgiving – no class		
29	Thanksgiving – no class		
Dec. 2	Allostery, cooperativity, and biological responses	Supplemental	RC
4	Molecular recognition; drug binding		RC
Wk15 5	Recitation		GTA
6	Membrane composition and structure	Ch 16	RC
Dec. 9	Mass spectrometry	Ch 26.1;	RC
11	Proteomics using mass spectrometry End for Exam VI	supplemental	RC
Wk16 12	Recitation		GTA
13	Exam VI		RC